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The problem considered is that of maintaining a set of N stations (machines,
production facilities) which are set out along a line and numbered, say, from left to
right, 1 to N. The stations (which are not necessarily identical) are maintained and
repaired if necessary by one operative, who patrols them first from left to right in
the order 1 to N and then from right to left in the order N — 1 down to 1 and so on.

It is assumed that breakdowns at station i occur completely at random in running
time at an average rate A,. The time for the operative to travel from left to right from
station i — 1 to station i (or from right to left from station i to station i — 1) and
then to carry out routine maintenance at station i is assumed to be a constant for
this pair of stations, and is denoted by w,. If, on arrival at station i, the operative
finds the station out of action, then an additional time r, is needed to repair station
i. It is assumed that r, is a constant for station i. It is also assumed that a repair
attempt at station i is successful with probability CT, (not necessarily 1). Thus the
model caters for a heterogeneous set of stations, unequally spaced.

Important performance measures for the system include the average time to
traverse the line of stations, along with the mean availability. For individual stations,
the availability, the mean time spent waiting for attention, and the mean length of
the stopped period are all important. It is shown how all of these quantities can be
computed.

1. Introduction

We consider the problem of the maintenance of a set of N stations, arranged in a
line and numbered, say from left to right, 1 to N. The stations are maintained by
one operative who patrols them first from left to right in the order 1 to N, and then
from right to left in the order N — 1 down to 1, and so on, as in the following diagram.
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In many factory-floor situations, this problem arises quite literally with the machines
arranged in rows. However, the model could equally describe the situation where
the stations are facilities located in different cities but needing regular maintenance
as well as occasional repair. The operative visits each station in turn, and then returns
to his starting point in reverse order for reasons of travelling convenience.

It is assumed that breakdowns at station i occur completely at random, i.e. in a
Poisson process, in running time at average rate A(. The time for the operative to
travel from left to right from station i — 1 to station i (or in the reverse direction)
and then to carry out routine maintenance at station i (or i — 1), referred to as the
travel time, is assumed to be a constant for each station pair (i — 1, i) and is denoted
by w,. If, on arrival at station i, it is found to be broken down, then an additional
time r, is required to repair it and return it to the running state. It is assumed that
r, is a constant for station i.

The problem is thus a particular case of the machine interference problem. If the
travel time were neglected, it could be treated by the methods first used by Ashcroft
(1950) who gave a solution to the M/G/l/N machine interference problem. Attempts
to take account of the travel time, and various patrolling disciplines in the
homogeneous case, include the work of Mack, Murphy & Webb (1957), Bunday &
Mack (1973), and Bunday & El-Badri (1984).

More recently, considerable interest in this type of problem has arisen in the field
of computer performance modelling and evaluation. Here messages arrive at station
i in Poisson fashion at an average rate A,. Messages which arrive at a blocked station
are lost. The time to transmit a message from station j is rt, and the switch-over time
between adjacent stations is w(. A good review and bibliography of some of these
applications is given by Takagi (1986, 1988, 1990). The particular back-and-forth
patrolling discipline considered in this paper has been used to model the reading/
writing of information from/to a disk. The operative constitutes the read/write head
which moves back and forth along a radius of the disk; the stations correspond to
bands on the disk. Models concerned with this so-called SCAN system include the
work of Coffman & Hofri (1982), Swartz (1982), and Coffman & Gilbert (1987) who
investigated a continuous model.

We allow for the possibility of unsuccessful repairs. It is assumed that a repair
attempt at station i is successful with probability <rt. This aspect of the model arises
quite naturally in some industrial applications. The operative is a robot patrolling
the line of stations (machines) and sometimes fails in its repair attempt. In that
situation, that station remains out of action at least until the next visit and repair
attempt. Yet another interpretation is that the repair consists of a number of phases
and that, at each visit, one phase is successfully carried out. The same mathematical
model arises if the number of phases of repair at station i has a geometric distribution
with mean I/a,. Thus the completion of a phase corresponds to the completion of
the total repair with probability <rt.

2. The mathematical model

Since breakdowns at station i occur completely at random at average rate Xu residual
run times at station i have an exponential distribution with mean I/A,. Thus if station
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i is left running at time t, the probability that it is still running after a further time T is

exp(-A,r) , (2.1)

whereas the probability that it is then stopped is

^r) (2.2)

independent of t. For ut e {0,1} (/ = 1 ,..., N), let u denote the vector (ut,..., uN), and
denote by u the left-to-right traverse of the stations (i.e. in the order 1 to N) in which
the operative leaves station 1 in state ux and finds station i (J = 2,..., N) in state u,,
where u, = 0 denotes that station i is running and u, = 1 denotes that station i is
broken down. We write n{u) for the probability that the operative encounters this
state on a left-to-right traverse in the steady-state situation. Similarly, v denotes the
right-to-left traverse, in the order N down to 1, in which the operative leaves station
N in state vN, and finds station N — k (k = 1,..., N — 1) in the state vN_k. The
probability that the operative encounters these states on a right-to-left traverse in a
steady-state situation is correspondingly written n(i). The 2N+i probabilities n(u)
and Tt(i) (u,v e {0,1}") satisfy the normalization conditions

5 > ( f i ) = l , I n(S) = 1 . (2.3)
a v

In addition,

n(u) = £ n(v)p(v, H), n(v) = £ n(S)p(S, 6), (2.4a,b)

where, in (2.4a), the transition probability p(tJ, «) is the conditional probability, given
the right-to-left traverse v, that the left-to-right traverse u follows immediately, while
(2.4b) has a similar interpretation since right-to-left traverses will follow left-to-right
traverses.

The transition probability in (2.4a) can be calculated by considering in turn the
transitions at the individual stations. For station j , the time that elapses between the
operative leaving it on a right-to-left traverse and next visiting it on the following
left-to-right traverse is

2w2 + r^i for; = 2,

!

J J-i
2 £ w, + riVl + £ rfcii + »,) for; = 3 ,..., N.

("2 (=2
Given that station; was found in state Vj with station; — k in state Vj_k (k = 1 ;' — 1)
on a right-to-left traverse, and that station i was found in state u, (i = 1 ,...,j — 1) on
the successive left-to-right traverse, the conditional probability that station ;' will be
found in state Uj on the latter traverse is denoted by q/vJt u}), for j = 2 ,..., N. Here
qj(Vj,Uj) depends on u1 ,..., u}-x and vY ,...,vJ-l through the quantity xt, but this
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dependency is suppressed in notation for simplicity. If we use (2.1) and (2.2), we obtain

q/0,0) = exp(-XjTj), q/0, 1) = 1 - exp(-V;)>

, 0) = oj exp(-^Tj), g/1, 1) = 1 - oj exp(-lJT/),

for j = 2 ,..., N. For j = 1, we need the probability of leaving station 1 in state u t

having just found it in state vv Thus

,1) = 0, 9 l ( l , 0 ) = ff1, ql(l,l)=l-al. (2.6)

For j = N, we need the probability of finding station N in state uN, having last left
it r,y time units earlier in state vN. Thus

«N(0, 0) = exp(-XNTN), q^0, 1) = 1 - exp(-XNxN),

) 1

We use (2.5)-(2.7) to compute the transition probabilities in (2.4a) as

N

p{6, u) = f [ q/vj, Uj).

A similar analysis allows the computation of the transition probabilities in (2.4b).
Then (2.3)-(2.4) supply us with 2N+1 independent equations for the 2N+1 state
equilibrium probabilities n(u) and n(t>). At the moment, no easily computed
closed-form solution for these equations appears to exist. They have defied our own
ingenuity as well as that of several computer algebra packages. However, numerical
solutions to any specified accuracy can be obtained, although even here we were
restricted to values of N < 9 because of the limitations of computing facilities
available to us.

3. Some quantities of interest

The average time T taken by the operative to traverse the stations in a left-to-right
traverse is given by

1-2 u \ J=2 /

In precisely the same way we can find the mean time T' for a right-to-left traverse.
In the equilibrium state, the probability that station) is found in the running state

when approached from the left is denoted by

Zj= £ n(0) (j = 2,..., JV), (3.2)
M-.UJ-O

where the summation is over those states for which u} = 0. The probability that
station j is found running when approached from the right is denoted by z), where

*'}= 1 *(«) U = 1 >•••> N - 1). (3.3)
v: V) = 0
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For j' ~& 2, a left partial cycle (LPC) of station j means a journey that the operative
makes between departure (leftwards) from station j and the next return to it via
station 1. A left partial cycle time (LPCT) of station j is the time taken for such a
journey; note that this does not include any time spent at station;. For j < N — 1,
a right partial cycle (RPC) and right partial cycle time (RPCT) are defined similarly
when the journey, initially rightwards, is via station N. Let a(L,j) (j = 2,..., N)
denote the probability that, in an LPC of station j , the set L of stations is found
stopped where

the primed integers referring to the stations visited on the first (right-to-left) pass,
and the unprimed integers to those visited on the second (left-to-right) pass.
Corresponding to the event L, the LPCT of station j takes the value

t(L,j) = 2 £ w , + £ r,, (3.4)
( = 2 teL

where r r is identified with ru etc. Similarly ar(L,j) denotes the conditional probability
that an LPC of station j encounters the state L, given that station j was running
when approached from the right just prior to the left partial cycle, whereas a,{L,j)
denotes the conditional probability that an LPC encounters the state L, given that
station j was found stopped immediately prior to the left partial cycle.

For station 2, we have

a(0,2) = zi, a({l'},2) = l - z i , (3.5)

and, for j = 3 ,..., N — 1,

a(LJ) = z'jaJLJ) + (1 - z'j)a,(L,j). (3.6)

Further we have

(J = 2 ,..., N - 1), (3.7a)

a(L,N)exp[-XNt(L,N)-], z, = z\ + ffl(l - z[), (3.7b,c)

where z'N is the probability that the operative leaves station N running on a
right-to-left right traverse and zx is the probability that he leaves station 1 running
on a left-to-right traverse. Of course the probabilities a(L,j), ar(L,j), and a,(L,j)
form complete distributions, so that

X a(L,j)= X ar(L,j)= £ a,(L,j) = 1. (3.8)
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We can treat the RPCs in a completely analogous fashion and obtain a set of
equations similar to (3.4)-{3.8) where, in the analogue of (3.7), the z'j appear on the
left and the z ; on the right.

F o r ; = 2,..., N — 1, the mean time that station j actually runs during one of its
LPCs is

a'tU.J)
kjx e " ^ dx + t(L,j) expl-Xjt(L,j)-]

o

+ a/1 - z'j) £ at(L,j)( f <£"° l]X e " ^ dx + t(LJ) exp[-Xjt(L,m).
LSiLj \Jo /

Thus, on carrying out the integration and using (3.7a) and (3.8), we readily obtain

Similarly we can calculate Rjt the mean running time in an RPC for station j .
Thus, if Fj denotes the mean running time of station j in a complete cycle, then

F-L+R -t j - Lj+ Rj

for j = 2 ,..., N — 1. Similar manipulation shows that

z, - z; CT^I - zi) zir -

4. Performance measures

If we use (3.2) in the expression (3.1) for the mean left-to-right traverse time, and
also consider the analogous result for T', then the mean time for a Complete cycle
(two successive traverses) of the stations can be written in the form

tT + T' = 2 t *>i + t oO - ZJ) + f n(i - z{).
1-2 i-1 (=1

Thus for station j , the availability Aj, defined as the proportion of time that the
station is actually running, is given by

Aj = Fj/(x + x1).
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An important measure for station j is the mean time that it is out of action, i.e.
the mean time from its breakdown to the moment its repair is completed. This we
denote by E[7}]. We use E[W ]̂ to denote the mean waiting time of station;, i.e. the
mean time that it stands idle awaiting the operative to work on its repair. These two
quantities differ by the mean value of the repair time. Thus

E[7}] = ELWj] + rj/aj.

But, since the mean run-time of station j is I/A,, we have the result

whence

Of course, even with homogeneous stations (r, = r, Xs = k, Cj = a, Wj = w at all
stations), the performance measures above will still vary from station to station,
depending on their position in the line. Those near the middle of the line have a
higher availability than those positioned near the end of the line.

For the complete system the average availability, i.e. the proportion of the total
possible time that stations are running, is given by

1 "

JV J

5. The case of zero repair time

A simple exact analytical solution is possible in the case where rs = 0 for all j . This
will also serve as a good approximation to the situation where r, is small compared
to Wj, which could arise in the case where the stations are well spread out
geographically. This model isolates the loss of availability due to repairs having to
wait for the operative to reach the location. In this case, t(L,j) from (3.4) is simply

2^1-2 wi> s 0

f J \ ( N \
Cj = exp[-kjt(L,j)] = exp -2A, £ w, , c) = exp -2XS £ w, ,

\ 1 = 2 / \ l"]+l J

we find that the system (3.7) and its right-to-left analogue can be written as

z} = Z'JCJ + (1 - z'j)<jjCj and z) = ZJCJ + (1 - ZJ)<J}C'} (j = 2 ,. . . , N - 1),

Z\ = ZiC'u Zl = Z\ + ff^l - Z'J.

It is clear that these equations can be treated in pairs as indicated and a closed-form
exact solution obtained.
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TABLE 1

Performance measures for selected values of the system parameters, with N = 8

A:

1
2
3
4
5
6
7
8

k

1
2
3
4
5
6
7
8

k

1
2
3
4
5
6
7
8

— .01
1 .01
1 .01
1 .01
1 .01
1 .01
1 .01
1 .01

ok

.90

.90

.90

.90

.90

.90

.90

.90

A =.7515

">k h

— .01
2 .01
.5 .01
.5 .01
1 .01

.5 .01

.5 .01
2 .01

°k

.90

.90

.90

.90

.90

.90

.90

.90

A = .7532

wt Xk

— .01
.5 .01
.5 .01
2 .01
1 .01
2 .01
.5 .01
.5 .01

ok

.90

.90

.90

.90

.90

.90

.90

.90

A = .7498

rt

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

It

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

It

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

zk Ak

.9672 .7003

.9236 .7522

.8792 .7718

.8369 .7818

.7968 .7818

.7592 .7718

.7239 .7522

.6719 .7003

T = 21.09

Zjt Ak

.9671 .6993

.9064 .7587

.8706 .7735

.8362 .7813

.7961 .7813

.7654 .7735

.7367 .7587

.6700 .6993

T = 21.18

«. Ak

.9673 .7012

.9325 .7489

.8961 .7670

.8376 .7822

.7976 .7822

.7461 .7670

.7182 .7489

.6729 .7012

T = 20.99

Era
42.80
32.94
29.57
27.91
27.91
29.57
32.94
42.80

Era
43.00
31.80
29.29
27.99
27.99
29.29
31.80
43.00

Era
42.60
33.53
30.38
27.85
27.85
30.38
33.53
42.60

k

1
2
3
4
5
6
7
8

j

k

1
2
3
4
5
6
7
8

k \

1 -
2
3
4
5
6
7
8

wk Xk

— .01
5 .01
2 .01
5 .01
1 .01
5 .01
2 .01
5 .01

Ok

.90

.90

.90

.90

.90

.90

.90

.90

4 = .7512

wk Xk

— .01
2 .01
5 .01
5 .01
1 .01
5 .01
5 .01
2 .01

Ok

.90

.90

.90

.90

.90

.90

.90

.90

4 = .7664

** K
- .005
I .005
I .005
I .005
I .005
I .005

.005

.005

Ok

.95

.95

.95

.95

.95

.95

.95

.95

A = .8172

rk

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

It

20.00
10.00
10.00
0.00
0.00

10.00
10.00
20.00

rk

0.00
10.00
20.00
40.00
40.00
20.00
10.00
0.00

zk

.9672

.9323

.8713

.8370

.7970

.7663

.7174

.6721

T =

z»

.9712

.8906

.8578

.8240

.8090

.8039

.7750

.7116

T =

Zk

.9925

.9836

.9678

.9466

.9165

.8879

.8690

.8493

T =

Ak

.7005

.7482

.7741

.7819

.7819

.7741

.7482

.7005

21.07

Ak

.6656

.7220

.7810

.8471

.8471

.7810

.7220

.6656

19.50

Ak

.8504

.8319

.8144

.7722

.7722

.8144

.8319

.8504

16.83

Era
42.80
33.65
29.18
27.89
27.29
29.18
33.65
42.76

Era

50.23
29.53
28.04
18.05
18.05
28.04
29.53
50.23

era
35.19
40.40
45.57
59.01
59.01
45.57
40.40
35.19

6. Numerical results

The provision of a comprehensive set of tables for the performance measures
discussed would make prohibitive demands on space, since each station has its own
value for Xh rh ot, and w(. It is of course possible to write a general computer program
in which these values are input as data for each of the N stations. Provided that
N < 9, such a program will give results in a reasonable time on commonly available
computer systems. The numerical results, given in Table 1, are hence restricted to a
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few particular examples, although there is no serious problem in extending these.
They are further restricted to the symmetric case which makes the calculations easier,
although the model is not so realistic.

As has been indicated, even in the case of homogeneous stations, the important
performance measures are not homogeneous. On the basis that average availability
is of importance, the general indication is that it is preferable to put the least reliable
machines, with high repair times, near the middle of the line, although this point
perhaps requires more detailed investigation over a wider range of values of the
parameters.

The more difficult problem is to extend the value of N beyond 9 (say). Apart from
the special case mentioned in Section 5, the method requires the solution of 2N+1

equations for the probabilities n(u) and n(i). The frustrating element is that all the
performance measures can be calculated from a knowledge of the 2N probabilities
zx,..., zN, and z\ ,..., z'N. However it appears that the only way to calculate these is to
use the n(u) and n{6) as in (3.2)-(3.3).

In a practical context, the model has been used to predict the overall availability
of machines set out in rows on a factory floor. The lack of homogeneity arose in this
situation from a mix of old and new machines which had different breakdown rates
and which, because of the differing nature of the tasks they were performing, also
had different repair times. Most of the breakdowns in this situation arose from a
single failure mode, and the assumption of random breakdowns appeared to be
reasonable. Repair was generally a routine procedure, and again constant repair time
seemed to be a reasonable assumption. If the repair time is variable, then the
mathematical modelling becomes intractable at the time of writing.
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